This document is provided to customers who have purchased SCIEX equipment to use in the operation of such SCIEX equipment. This document is copyright protected and any reproduction of this document or any part of this document is strictly prohibited, except as SCIEX may authorize in writing.

Software that may be described in this document is furnished under a license agreement. It is against the law to copy, modify, or distribute the software on any medium, except as specifically allowed in the license agreement. Furthermore, the license agreement may prohibit the software from being disassembled, reverse engineered, or decompiled for any purpose. Warranties are as stated therein.

Portions of this document may make reference to other manufacturers and/or their products, which may contain parts whose names are registered as trademarks and/or function as trademarks of their respective owners. Any such use is intended only to designate those manufacturers’ products as supplied by SCIEX for incorporation into its equipment and does not imply any right and/or license to use or permit others to use such manufacturers’ and/or their product names as trademarks.

SCIEX warranties are limited to those express warranties provided at the time of sale or license of its products and are SCIEX’s sole and exclusive representations, warranties, and obligations. SCIEX makes no other warranty of any kind whatsoever, expressed or implied, including without limitation, warranties of merchantability or fitness for a particular purpose, whether arising from a statute or otherwise in law or from a course of dealing or usage of trade, all of which are expressly disclaimed, and assumes no responsibility or contingent liability, including indirect or consequential damages, for any use by the purchaser or for any adverse circumstances arising therefrom.

For research use only. Not for use in diagnostic procedures.

AB Sciex is doing business as SCIEX.

The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners.

AB SCIEX™ is being used under license.

© 2017 AB Sciex

AB Sciex Pte. Ltd.
Blk 33, #04-06
Marsiling Ind Estate Road 3
Woodlands Central Indus. Estate.
SINGAPORE 739256
Introduction

READ THIS IMPORTANT NOTICE: This version of the Analyst® Device Driver replaces all previous versions of the Analyst® Device Driver and includes multiple high priority defect resolutions. Previous versions are no longer supported and customers are strongly encouraged to update to version 1.2. For more information about the specific defect resolutions, refer to the New Features and Changes sections for the version of the software currently installed.

In this guide, the term Analyst® software refers to both the Analyst® and the Analyst® TF software.

The Analyst® Device Driver is an HPLC device control application for the Analyst® software. It controls SCIEX-supported Agilent LC devices and SCIEX-supported CTC PAL3 devices.

Note: While the Analyst® Device Driver supports the device series mentioned previously, it is intended for use with Agilent devices (1260,1290, and future series). If the Agilent devices are currently controlled through the Hardware Configuration Editor, then continue doing so unless newer Agilent devices are used in the same methods. Methods created previously without the Analyst® Device Driver must be updated or created again to add support for the Analyst® Device Driver-controlled devices.

This document provides information about and procedures for installing the Analyst® Device Driver. This document also describes the known issues in the Analyst® Device Driver.

To make sure that the installation is successful, read the Install the Analyst® Device Driver on page 9. For information about installing the Analyst® 1.6.2 (or higher) software, refer to the Analyst® Software Installation Guide. For information about installing the Analyst® TF 1.7.1 software with Components for LC Devices, refer to the Analyst® TF 1.7.1 Software with Components for LC Devices Release Notes.

Note: The Analyst® Device Driver is designed to interface the Analyst® software with the Agilent Instrument Control Framework, a new method to control newer Agilent devices. Most of the user interface shown within the Analyst® Device Driver, as well as user workflows, are provided by Agilent. These interfaces and workflows are described in the documentation that is provided with the Agilent devices. Familiarize yourself with these documents before using the Analyst® Device Driver to avoid confusion or configuration issues. The Agilent documentation refers to the use of Chemstation. Analyst® Device Driver can be substituted for Chemstation within these instructions.
Contact Us

SCIEX Support

- sciex.com/contact-us
- sciex.com/request-support

Customer Training

- In North America: NA.CustomerTraining@sciex.com
- In Europe: Europe.CustomerTraining@sciex.com
- Outside the EU and North America, visit sciex.com/education for contact information.

Online Learning Center

- SCIEXUniversity

Technical Support

SCIEX and its representatives maintain a staff of fully-trained service and technical specialists located throughout the world. They can answer questions about the system or any technical issues that might arise. For more information, visit the website at sciex.com.

Software Documentation

The Analyst® Device Driver software documentation is automatically installed with the software and can be found in the following locations:

- **Start menu**: All Programs > AB SCIEX > Analyst Device Driver
- **Application folder**: C:\Program Files\Analyst\Help (Windows 7, 32-bit operating systems)
- **Application folder**: C:\Program Files (x86)\Analyst\Help (Windows 7, 64-bit operating system)

The following documents are created by the first installation of the Analyst® Device Driver:

- **Start > All Programs > AB SCIEX > Analyst Device Driver**
 - Analyst® Device Driver *Release Notes*
 - Analyst® Device Driver *Tutorial*

Note: If the existing Analyst® Device Driver software is upgraded, then the previous versions of these two documents are replaced.

Prerequisites

- To install the Analyst® Device Driver, you must have Administrator privileges on the workstation.
The Analyst® 1.6.2 (or higher) software or the Analyst® TF 1.7.1 Software with Components for LC Devices must be installed on workstations where the Analyst® Device Driver is to be installed.

- The hardware profile is deactivated.
New Features and Changes from Version 1.1 to Version 1.2

- Analyst® Device Driver 1.2 adds support for the Analyst® TF 1.7.1 Software with Components for LC Devices or higher software. (AN-959)
- CTC PAL3 devices are now supported.
- Agilent trays with vial sequence ordering using columns or rows are now supported.
- Custom plates are supported.
- The Save and Save As options have been added to the Analyst® Device Driver software Method Editor. LC parameters can now be saved to existing method files. (AN-938)
- Direct control of the devices can be accessed through the Status window. After opening the Status window, users can right-click in the window to access the device controls. (AN-911)
- Agilent 1260 Infinity II Vialsampler G7129A and Agilent 1290 Infinity II Vialsampler G7129B using 66-vial plates, 18-vial plates, or 50-vial plates, are now supported.

Notes on Use

- Any changes made to the hardware configuration, for example, adding a new drawer, will affect the existing methods. Existing methods might not be compatible with the new hardware configuration and should be created again.
- Any physical impact to the CTC PAL3 autosampler, such as a drawer hitting an object or an arm hitting or being stopped by an external object, might cause the system to stop responding correctly. If this issue occurs, then the whole system might need to be re-calibrated before it can be used again. Re-calibration can be performed using the hand-held device.
- The Analyst® Device Driver has been developed and tested for use with the Agilent Instrument Control Framework (ICF) version 02.04 (version 2.4.124 in Windows Programs and Features) and the Agilent Instrument Control Framework - LC Drivers A.02.14 SP1 (version 2.14.115 in Windows Programs and Features). To control Agilent devices that are released after the Analyst® Device Driver is released, users are able to update the versions of the ICF and the LC Drivers installed on the computer. While it is expected that these updates will not interfere with the functioning of the Analyst® Device Driver, it is recommended that users validate their system for use after installing any updates to either the ICF or LC Driver packages.
- If the Analyst® software loses communication with the LC devices, for example if the Ethernet cable is accidentally disconnected, then it is possible that the pump flow will not stop, or the column oven will remain heated at the set temperature, potentially causing the pump to run dry. We recommend that the cables are inspected to make sure that the connections are secure.
• If pumps are used to record the pressure, then the first channels (1 or 2, depending on how many pumps are used) should be reserved for the pumps and the ADC should be configured to monitor the rest of the channels—up to 16 in total. (AN-988)

• The software does not validate racks in CTC PAL3 autosamplers. Users can select a different rack or plate other than the one selected in the autosampler and injection is still triggered. To avoid any issues, make sure that the rack or plate in the autosampler matches the rack or plate selected in the Batch before starting acquisition. (AN-994)

• The software does not validate racks in Agilent autosamplers. Users can select a different rack or plate other than the one selected in the autosampler and injection is still triggered. To avoid any issues, make sure that the rack or plate in the autosampler matches the rack or plate selected in the Batch before starting acquisition. (AN-995)

• Agilent autosampler plates have been added to the database to indicate whether the sequencing order of the vials is by row or column. The added plates are: 54VialGenPlateR (row), 96VialGenPlateC (column), and 384VialGenPlateC (column). (AN-1031)

• If more than one detector wavelength in the Analyst® Device Driver method is selected, then the trace is shown as a summed Total Wavelength Chromatogram (TWC). The TWC is a sum of all of the traces for all of the selected channels in the method. To show a specific trace, select the entire TWC, and then click Explore > Extract Wavelength > Use Dialog. Type the same wavelength in the Start and Stop fields. A new pane showing the trace opens.

• Only five of the eight signal channels in the Agilent DAD Infinity II can be used in a method. If more than five signal channels are selected, then a message is shown advising the user to select the channels again. (AN-1030)

• An error message is shown when the user attempts to save methods to different project locations or open methods from different project locations. Method files can only be saved or opened from the current Analyst® software project location. (AN-923)

• The File Info now records the size of the needle or the size of the loop used during acquisition. (AN-904)

• Hardware configurations that include the Agilent Multisampler Infinity II with the dual-needle option require additional time for purging before the mass spectrometer goes to Ready status. Tip: Reducing the flow rate but keeping the same gradient for the equilibration method can reduce the purging time. (AN-1042)

Fixed Issues

The Analyst® Device Driver status might not switch to the Control mode after the user deactivates the hardware profile (ATF-604)

This issue has been fixed in version 1.2. Direct control becomes available after the hardware profile is activated.

Custom plates are not added to the Location tab in the Batch Editor in version 1.1 (AN-898)

In version 1.1, users were unable to use the RackBuilder.exe to add custom plates to the Batch Editor. In version 1.2, users can now add custom plates to the Batch Editor.

Users can append changes to the LC parameters in a method to non-existent files (AN-837)
Changes to LC parameters can now only be appended to existing method files.

Operating System Requirements

The Analyst® Device Driver requires one of the following operating systems:

- Microsoft Windows 7 SP1 (32-bit)
- Microsoft Windows 7 SP1 (64-bit)

Supported Computer Models

The Analyst® Device Driver is supported on the following computers:

Analyst® software

- Dell Optiplex 9010
- Dell Optiplex 990
- Dell Optiplex XE2

Analyst® TF software

- Dell Precision T3600
- Dell Precision T5810

Install the Analyst® Device Driver

Note: To retain any custom plates created in previous versions of the Analyst® Device Driver, create a backup of the sample database before removing or upgrading the existing version of the Analyst® Device Driver. Refer to [Remove the Analyst® Device Driver on page 10](#).

1. Read these release notes.
2. Make sure that the Prerequisites are satisfied.
3. Make sure that the user installing the Analyst® Device Driver has the same Administrator privileges as the user who installed the Analyst® software.
5. Extract the files from the compressed package to the local hard drive.
a. Right-click the downloaded file `AnalystDeviceDriver1_2.zip`, and then select the **Extract All** option.
b. Select an accessible folder on the local computer to extract the zipped files.

Note: This will make sure that all of the files are properly extracted.

6. Navigate to the folder where the contents of the `AnalystDeviceDriver1_2.zip` file were extracted.
7. Double-click `setup.exe`.
 The Installation Wizard opens.
8. Follow the instructions provided in the wizard.

After successful installation, in the Programs and Features area of the Windows 7 Control Panel, users will see the following entries:

- Agilent Instrument Control Framework
- Agilent Instrument Control Framework - LC Drivers
- Analyst® Device Driver
- CTC PAL3 drive

and either the Analyst® 1.6.2 Patch for ADD 1.2 or Analyst® 1.6.3 Patch for ADD 1.2 if the Analyst® Device Driver is installed on top of the Analyst® software.

If the Analyst® Device Driver is installed on top of the Analyst® TF software, then the Analyst® Patch for ADD is not installed. The Analyst® TF software installation does not include the two Analyst® Device Driver software patches.

Remove the Analyst® Device Driver

1. Deactivate the hardware profile containing the Analyst® Device Driver (ADD) software application in the Analyst® software.
2. Using the Programs and Features utility in the Windows 7 Control Panel, click **Remove** for the Analyst® Device Driver.
 The uninstall wizard starts.
3. Follow the instructions on the screen.
 The Analyst® Device Driver is removed.

Note: The following items are not removed but will be updated if required by the wizard: Agilent Instrument Control Framework and the Agilent Instrument Control Framework - LC Drivers or CTC PAL3 drivers.
Minimum Required Firmware Versions

In the previous documentation for the software, guidance was given regarding supported firmware versions for Agilent and CTC PAL3 devices. With the release of the Analyst® Device Driver, this practice has been discontinued. When controlling devices through the Analyst® Device Driver, communication with the devices themselves is handled through the Agilent Instrument Control Framework (ICF). As a result, the Analyst® software no longer communicates directly with the device. Because of this, the required revision of the firmware is no longer governed through the Analyst® software, but rather by the ICF itself. Each new release of ICF might change the required version of the firmware for a given device. This is beyond the control of the Analyst® software. The ICF and LC Driver release notes as well as the CTC PAL3 user guide (Agilent Control Framework Release Information A.02.04.pdf, LC Driver Release Note A0214.pdf, and PAL3 User Manual Edition 8.pdf) are distributed with the Analyst® Device Driver. These documents provide the minimum firmware revision required to use devices supported by ICF. Users should refer to these document before selecting the firmware revision to be used with the Analyst® Device Driver on their device.

If the installed version of the ICF is changed or updated, then the minimum firmware revision might also change. Users should refer to the documentation accompanying any future ICF updates for information on minimum firmware versions.

<table>
<thead>
<tr>
<th>CTC PAL</th>
<th>Autosampler</th>
<th>Pump</th>
<th>Oven</th>
<th>Detector</th>
<th>Controller</th>
<th>Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTC PAL3 RSI</td>
<td>2.4.16279</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CTC PAL3 RTC</td>
<td>2.3.16151</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CTC PAL-xt</td>
<td>4.1.3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Agilent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agilent 1260 Inf Multisampler G7167A</td>
<td>D.06.78/ D.07.16</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Agilent 1260 Inf II Vialsampler G7129A</td>
<td>D.07.12</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Agilent 1290 Inf II Multisampler G7167B</td>
<td>D.07.17</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Autosampler</td>
<td>Pump</td>
<td>Oven</td>
<td>Detector</td>
<td>Controller</td>
<td>Valve</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>------</td>
<td>----------</td>
<td>------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Agilent 1290 Inf II High Speed pump G7120A</td>
<td>N/A</td>
<td>B.06.77/ B.07.10</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Agilent 1290 Inf II Flexible pump G7104A</td>
<td>N/A</td>
<td>B.06.77/ B.07.10</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Agilent 1260 Inf II Quat pump G7111B</td>
<td>N/A</td>
<td>D.07.13</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Agilent 1200 pump G1312B</td>
<td>N/A</td>
<td>A.06.53</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Agilent 1290 Inf II Column Oven G7116B</td>
<td>N/A</td>
<td>N/A</td>
<td>D.06.78/ C.07.10</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Agilent 1260 Inf II Column Oven G7116A</td>
<td>N/A</td>
<td>N/A</td>
<td>C.07.10</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Agilent Oven G1316C, DE93000116</td>
<td>N/A</td>
<td>N/A</td>
<td>A.07.01</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Agilent 1290 Inf II DAD Detector G7117B</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D.06.77/ D.07.10</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Agilent 1260 Inf II DAD Detector G7117C</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D.07.10</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Agilent DAD Detector G4212A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>B.06.73</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Agilent DAD Detector G1315B, DE63058257</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>A.06.50</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Known Issues

Known Issues in Version 1.2

Changes to the hardware profile are not saved

When a hardware profile is activated in the Analyst® software, the software uses the hardware profile for the mass spectrometer configuration but uses the Analyst® Device Driver (ADD) for the device configuration. If another user changes the device configuration, then this new device configuration is not saved in the hardware profile. If the Analyst® software hardware profile does not activate, then run the Auto-configure option in the ADD software. (AN-363)

<table>
<thead>
<tr>
<th></th>
<th>Autosampler</th>
<th>Pump</th>
<th>Oven</th>
<th>Detector</th>
<th>Controller</th>
<th>Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent 1290 Infinity Valve G1170A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D.07.13</td>
</tr>
<tr>
<td>ExionLC™ System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ExionLC™ AC pump</td>
<td>2.04/3.11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ExionLC™ AD pump</td>
<td>3.11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ExionLC™ AC Autosampler</td>
<td>N/A</td>
<td>1.28</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ExionLC™ AC Oven</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>2.03/3.11</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ExionLC™ PDA</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.11</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Shimadzu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shimadzu LC30AD</td>
<td>3.11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Shimadzu LC20ADXR</td>
<td>2.04</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Shimadzu Controller CBM-20A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.11</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Non-English regional settings cause the injection volume setting to default to -1
To avoid any issues with batch submission, the Regional and Language Settings must be set to English. (AN-945)

Reason for status change to error is not provided
When the Analyst® software detects an error from the ADD, the icon color changes to red. However, when the user double-clicks the icon, a reason for the Status mode change is not shown. Users can access the user interface to view the error or they can open the Event Viewer to view the Event Log. (AN-999)

Known Issues in Versions 1.1 and 1.0

An acquisition method created in older versions of the Analyst® Device Driver might not be compatible.

For example, opening a saved Analyst® Device Driver 1.0 method in the Analyst Device Driver 1.1 method editor results in the LC portion of the method being set back to defaults, with the gradient information cleared. If this occurs, then the LC portion of the method must be recreated and then saved with the MS method. (ATF-606)

Acquisition Method with Analyst® Device Driver LC components re-saved in the Manual Tuning mode shows Analyst® Device Driver as not being used in the method in the Acquisition Method editor

When an acquisition method created using the Analyst® Device Driver and re-saved in the Manual Tuning mode of the Analyst® software is opened in the Acquisition Method editor, the Analyst® Device Driver is shown as not being used in the method. To fix this issue, right-click Analyst Device Driver and then select the Use option to start using the LC component of the method again. To avoid this issue, do not re-save the acquisition method with the Analyst® Device Driver LC components in the Manual Tuning mode. (AN-360)

Hardware profile does not store information about individual peripheral devices connected in an LC stack

When using the Analyst® software, the hardware profile identifies the devices contained within the profile. For example, mass spectrometer model, autosampler, pump, and so on. The Analyst® Device Driver operates as a software application, therefore, no information is recorded within the hardware profile about the individual devices that are configured within the application. As a result, the Analyst® software is unable to validate methods created using the Analyst® Device Driver to make sure that actively-configured LC devices match those stored within a previously created method. If there is a mismatch, then the acquisition fails. To avoid this issue, make sure that the active LC devices match those that were active in the hardware profile when the method was saved. We recommend the use of unique hardware profile names that also indicate the basic LC components configured. (AN-363)

Acquisition stops and an error is generated when a hardware profile with an integrated autosampler and Analyst® Device Driver is used

If an acquisition is started when the active hardware profile contains both an integrated autosampler (from the Autosampler list in the Hardware Configuration Editor) as well as the Analyst® Device Driver, then acquisition might stop with the device statuses turning red. This scenario can occur if the integrated autosampler is added to the hardware profile (and shown) before the Analyst® Device Driver is added. To avoid this issue, when creating
a hardware profile that contains both an integrated autosampler as well as the Analyst® Device Driver, make sure that the Analyst® Device Driver is added before the autosampler and is listed above the autosampler in the profile.

Figure 1-1 Hardware profile with Analyst® Device Driver and CTC PAL Autosampler

This also applies for situations where the Analyst® Device Driver will coexist with another software application that is controlling the autosampler (such as with Eksigent®, MPX™ driver software, and other AAO-controlled systems). The Analyst® Device Driver should always be added first, with the autosampler-containing system added after. In this setup, only one autosampler can be included in the profile (except when using the MPX™ driver software). A hardware profile that contains an integrated autosampler as well as an Analyst® Device Driver-controlled autosampler cannot be used. (AN-368)

Cannot install the MPX™ driver software if the Analyst® Device Driver is already installed on the computer

If the MPX™ driver software is removed after the Analyst® Device Driver is installed, then the MPX™ driver software cannot be installed again. To resolve this issue, remove the Analyst® Device Driver, install the MPX™ driver software, and then install the Analyst® Device Driver. (AN-524)
New Features and Changes from Version 1.0 to Version 1.1

- The sampler can be custom programmed for the automated addition of an internal standard (IS) to the vials before injection. The pumps stop running to allow addition of the IS. This feature is also known as the Custom Injector Program and is available in the ADD 1.1 Method Editor.

- Custom plate creation is supported. Refer to the ADD Tutorial.

- Generic plate selection is supported. Refer to the ADD Tutorial.

- The pressure gradient of the chromatographic run can be recorded. Refer to the ADD Tutorial.

- Users are able to set the cooler temperature for cooled autosamplers. When configuring the hardware profile, after using the auto-configure option, double-click on the autosampler, select the option for "Cooler installed" and then change the Mode to "Variable temperature mode (method parameter)."

- Issue AN-768 has been fixed. In rare instances, samples could be injected in the wrong order.

- Issue ATF-568 has been fixed. The first run of a newly started batch was always isocratic, using the start gradient of the last sample. This has been corrected and now all samples use the gradient information from the method.

- Issue ATF-569 has been fixed. The pumps would start pumping immediately after activation of the hardware profile, using the last set flow rate.

- Issue ATF-575 has been fixed. In some instances, the pumps would not stop when an error was encountered during a batch run.

- Issue ATF-577 has been fixed. An acquisition error would occur if the LC method had a duration or stop-time that was longer than the MS portion of the method. Now, MS acquisition will follow the method duration set within the MS method and the LC devices will follow the duration set in the LC portion of the method. It is recommended however, that both methods be set to the same duration.

- Issue ATF-589 has been fixed. Previously depending on the resolution of the user’s monitor, the Analyst Device Driver method editor may have been shown with scroll-bars, requiring manual scrolling to see all parts of the method. This has been corrected and the method editor will automatically resize.

- Issue ATF-601 has been fixed. Previously if a missing vial was encountered during a run, the batch would be aborted but the system would continue to run. Now, if set in the Analyst and Analyst Device Driver software, the sample acquisition will be executed without the LC gradient when a missing vial is encountered, and the system will proceed to the next sample at the end of that ‘acquisition.’

Note: In the Analyst Queue Options dialog box, select the "Fail whole batch in case of missing vial" check box if desired, click OK, and then start the batch run. The batch stops if the "Ignore Missing Vessel" option is selected in the ADD Control dialog of the autosampler.
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>First release of document.</td>
<td>April 2015</td>
</tr>
</tbody>
</table>
| B | Revisions for software version 1.1
 - Added Important Notice to Introduction section regarding obsoleting version 1.0.
 - Added the New Features and Changes from Version 1.0 to Version 1.1 section.
 - Added a note to step 3 in the Remove the ADD software section.
 - Removed the Missing vial detection does not generate an error message by the Agilent ICF framework from the Known Issues and Limitations section. (ATF-591)
 - Added Missing Vial Workaround (ATF-591) to the New Features and Changes from Version 1.0 to Version 1.1 section.
 - Removed the topic Contents of the Analyst Device Driver Web Download Package from the document. | May 2016 |
| C | Updated Introduction and Prerequisites sections.
 - Added New Features and Changes from Version 1.1 to Version 1.2.
 - Updated Notes on Use section.
 - Updated Fixed Issues section.
 - Updated Supported Computer Models section.
 - Updated Install the Analyst® Device Driver section.
 - Updated Remove the Analyst® Device Driver section.
 - Updated Minimum Required Firmware Versions section.
 - Added new issues to Known Issues section.
 - Removed issue ATF-602.
 - Added firmware version information. | May 2017 |